Coupling of L-type voltage-sensitive calcium channels to P2X(2) purinoceptors in PC-12 cells.
نویسندگان
چکیده
Extracellular ATP elevates cytosolic Ca(2+) by activating P2X and P2Y purinoceptors and voltage-sensitive Ca(2+) channels (VCCCs) in PC-12 cells, thereby facilitating catecholamine secretion. We investigated the mechanism by which ATP activates VSCCs. 2-Methylthioadenosine 5'-triphosphate (2-MeS-ATP) and UTP were used as preferential activators of P2X and P2Y, respectively. Nifedipine inhibited the ATP- and 2-MeS-ATP-evoked cytosolic Ca(2+) concentration increase and [(3)H]norepinephrine secretion, but not the UTP-evoked responses. Studies with Ca(2+) channel blockers indicated that L-type VSCCs were activated after the P2X activation. Mn(2+) entry profiles and studies with thapsigargin revealed that Ca(2+) entry, rather than Ca(2+) release, was sensitive to nifedipine. Although P2X(2) and P2X(4) receptor mRNAs were detected, studies with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid revealed that P2X(2) was mainly coupled to the L-type VSCCs. The inhibitory effect of nifedipine did not occur in the absence of extracellular Na(+), suggesting that Na(+) influx, which induces depolarization, was essential for the P2X(2)-mediated activation of VSCCs. We report that depolarization induced by Na(+) entry through the P2X(2) purinoceptors effectively activates L-type VSCCs in PC-12 cells.
منابع مشابه
Neuropeptide Y inhibition of calcium channels in PC-12 pheochromocytoma cells.
We previously demonstrated, using rat PC-12 pheochromocytoma cells differentiated to a sympathetic neuronal phenotype with nerve growth factor (NGF), that neuropeptide Y (NPY) inhibits catecholamine synthesis as well as release. Inquiry into the mechanisms of these inhibitions implicated distinct pathways involving reduction of Ca2+ influx through voltage-activated Ca2+ channels. In the present...
متن کاملCharacterization of calcium signaling by purinergic receptor-channels expressed in excitable cells.
ATP-gated purinergic receptors (P2XRs) are a family of cation-permeable channels that conduct Ca(2+) and facilitate voltage-sensitive Ca(2+) entry in excitable cells. To study Ca(2+) signaling by P2XRs and its dependence on voltage-sensitive Ca(2+) influx, we expressed eight cloned P2XR subtypes individually in gonadotropin-releasing hormone-secreting neurons. In all cases, ATP evoked an inward...
متن کاملThe Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کاملATP inhibits Mg(2+) uptake in MDCT cells via P2X purinoceptors.
Nucleotides have diverse effects on water and electrolyte reabsorption within the distal tubule of the nephron. As the distal tubule is important in control of renal Mg(2+) balance, we determined the effects of ATP on cellular Mg(2+) uptake in this segment. The effects of ATP on immortalized mouse distal convoluted tubule (MDCT) cells were studied by measuring Mg(2+) uptake with fluorescence te...
متن کاملThe Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 280 5 شماره
صفحات -
تاریخ انتشار 2001